BUKU SAKU

PERSYARATAN POKOK RUMAH YANG LEIIH AMAN

Bangunan tembokan dengan bingkai beton bertulang

DIAJUKAN OLEH:

Mr. Teddy Boen Prof. Priyo Suprobo

Prof. Sarwidi
Dr. Krishna S. Pribadi
Ir. Mudji Irmawan A
Dr. Iman Satyamo
Dr. Ashar Saputra

The Project on Bullding Adminlstration and Enforcement Capacity Development for Seismic Resilience 2009

b) Pengecoran Balok

Tulangan dirangkal dl atas dinding

Cetakan/bekisting pada balok gantung harus diberi penyangga

Cetakan/ bekisting dapat dilepas setelah 3 hari (untuk balok yang menumpu pada dinding) dan pada balok gantung baru bisa dilepas setelah 14 hari

Bagian5. Pengecoran beton

a)Pengecoran Kolom

- Pastikan cetakan/ bekisting rapat dan kuat/kokoh.
- Pengecoran kolom dilakukan secara bertahap setiap 1 m
- Pada saat pengecoran beton dirojok dengan besi tulangan atau bambu agar tidak ada yang keropos.
- Pelepasan cetakan/ bekisting minimal 3 hari setelah pengecoran

DAFTARISI

Daftar isi . ii

1. Persyaratan Pokok Bangunan yang Lebih Aman dari Gempa 1
2. Bahan Bangunan
3. Beton ... 2
4. Mortar.. 3
5. Batu Fondasi .. 3
6. Kayu .. 3
7. Keberadaan dan Dimensi Struktur Utama
8. Fondasi
9. Balok Pengikat/ Sloof .. 4
10. Kolom 5
11. Balok Keliling/ Ring ... 5
12. Struktur Atap ... 6
13. Dinding .. 10
14. Hubungan antar elemen struktur
15. Fondasi - Balok Pengikat/ sloof ... 11
16. Balok Pengikat/ sloof - Kolom .. 11
17. Kolom - Dinding ... 12
18. Kolom - Balok Keliling/ Ring .. 12
19. Balok Keliling/ Ring - Kuda-kuda ... 13
20. Angkur Gunung Gunung ... 13
21. Pengecoran Beton
a. Pengecoran Kolom .. 14
b. Pengecoran Balok 14

5. Balok Keliling/Ring - Kuda kuda

Pengikatan kuda-kuda pada balok keliling/ring dapat juga dilakukan dengan cara berikut:

6. Angkur Gunung gunung

3.Kolom-Dinding

Foto pertemuan dinding dengan Kolom

4. Kolom-Balok Keliling/Ring

Tulangan kolom dilewatkan ke balok ring dengan panjang lewatan minimal $40 \times$ Dlameter $(40 \mathrm{~cm})$

Fotorambung Kolom dan balok pengikat/sloof

Bagian 1. Persyaratan pokok

 RUMAH YANG LEBIH AMAN1. Kualitas bahan bangunan yang baik
2. Keberadaan dan dimensi struktur yang sesuai
3. Seluruh elemen struktur utama tersambung dengan baik
4. Mutu pengeriaan yang baik

Bagian2. B AHAN BANGUNAN

1. BETON

1 Semen

2 Pasir

- Campuran beton terdiri dari 1 semen : 2 Pasir : 3 Kerikil : 0,5 air catatan: perlu diperhatikan penambahan air dilakukan sedikit demi sedikit dan disesuaikan agar beton dalam keadaan pulen (tidak terlalu encer dan tidak terlalu kental)

Pengulian sederhana Letakkan beton di tangan seperti gambar berikut:

* Dikutip dari Buku Constructing Seismic Resistant Masonry Housing in indonesia, Teddy Boen, 2006

- Ukuran kerikil yang baik maksimum 2 mm dengan gradasi yang baik
- Gunakan semen tipe 1

Bagian4. Hubungan antar elemen struktur

1. Fondasi-Balok Pengikat/ Sloof

Angkur besi ditanam untuk menghubungkan pondasi dan sloof

Jarak maksimal tiap angkur adalah 1 m

2. Balok Pengikat/Sloof-Kolom

Tulangan kolom dilewatkan/ dibengkokkan ke sloof dengan 'panjang lewatan' minimal $40 \times$ Diameter (40 dikali $10 \mathrm{~mm}=40 \mathrm{~cm}$)

6. Dinding

Untuk menambah kekuatan, dinding diplaster dengan perbandingan campuran 1 semen : 4 pasir dengan tebal 2 cm

2. MORTAR

Campuran volume MORTAR terdiri dari 1 semen + 4 pasir bersih + Air secukupnya
3. BATU FONDASI

FONDASI TERBUAT DARI BATU KALI/ GUNUNG YANG KERAS
4. KAYU

bagian 3. Struktur utama

1. Fondasi

Ukuran minimum fondasi:

Jika keadaan tanah cukup keras, fondasi batu dapat dibuat dengan ukuran sebagai berlkut:

- Lebar atas fondasi minimal 30 cm
- Lebar bawah fondasi minimal 60 cm
- Ketinggian fondasi minimal 60 cm

2. Balok Pengikat/Sloof

Spesifikasi:
Ukuran balok pengikat/ sloof: $15 \times 20 \mathrm{~cm}$
Tulangan utama 10 mm
Tulangan begel $\varnothing 8 \mathrm{~mm}$
Jarak tulangan begel 15 cm
Tebal selimut beton 15 mm

Detail A
Pertemuan ikatan angin
dengan gunung gunung

Foto pertemuan ikatan angin dengan gunung gunung

Detail B

Pertemuan ikatan angin
dengan kuda kuda

a. Gunung gunung/Amplg

Bingkai ampig terbuat dari beton bertulang dengan ukuran $15 \mathrm{~cm} \times 12$ cm . Menggunakan tulangan utama diameter 10 mm dan begel diameter 8 mm , tebal selimut beton 1 cm
Ampig terbuat dari susunan bata yang direkatkan dengan campuran adukan 1 semen : 4 pasir, dan diplaster.
Penggunaan bahan ringan seperti papan dan GRC juga dianjurkan untuk meminimalisasi akibat yang parah bila ampig roboh saat terjadi gempa

c.lkatan Angin

Detail B

3. Kolom

Spesifikasi:
Ukuran kolom $15 \times 15 \mathrm{~cm}$
Tulangan utama baja $\varnothing 10 \mathrm{~mm}$
Tulangan begel baja $\varnothing 8$ mm
Jarak antar begel 15 cm
Tebal selimut beton dari sisi terluar begel 15 mm

4. Balok Pengikat/Ring

12 cm

5.Struktur Atap

a. Kuda kuda Kayu

Detail 2

Detail 3

Plat baja tebal 4 mm dan lebar 40 mm atau Papan tebal 20 lebar 100 mm Baut min. $\varnothing 10 \mathrm{~mm}$

Detall 4

